Maximal norm Hankel operators

نویسندگان

چکیده

A Hankel operator $\mathbf{H}_\varphi$ on the Hardy space $H^2$ of unit circle with analytic symbol $\varphi$ has minimal norm if $\|\mathbf{H}_\varphi\|=\|\varphi \|_2$ and maximal $\|\mathbf{H}_\varphi\| = \|\varphi\|_\infty$. The both only $|\varphi|$ is constant almost everywhere or, equivalently, a multiple an inner function. We show that norm-attaining norm, then norm. If continuous but not constant, set at which $|\varphi|=\|\varphi\|_{\infty}$ nonempty intersection spectrum factor $\varphi$. obtain further results illustrating case in general related to "irregular" behavior $\log |\varphi|$ or argument near "maximum point" $|\varphi|$. role certain positive functions coined apical Helson--Szeg\H{o} weights discussed former context.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Operators on Weighted Bergman Spaces and Norm Ideals

Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.

متن کامل

A Note on Maximal Operators Associated with Hankel Multipliers

Let m have compact support in (0,∞). For 1 < p < 2d/(d + 1), we give a necessary and sufficient condition for the Lprad(R )-boundedness of the maximal operator associated with the radial multiplier m(|ξ|). More generally we prove a similar result for maximal operators associated with multipliers of modified Hankel transforms. The result is obtained by modifying the proof of the characterization...

متن کامل

Rigged Non-tangential Maximal Function Associated with Toeplitz Operators and Hankel Operators

Let T denote the unit circle and dm the normalized Lebesgue measure on T . For 1 ≤ p ≤ ∞, L stands for L(T, dm). As usual, H is the Hardy subspace of L. Let P : L → H be the orthogonal projection. For f ∈ L, the Toeplitz operator Tf and the Hankel operator Hf are defined by the formulas Tfφ = Pfφ and Hfφ = (1 − P )fφ, φ ∈ H, whenever these expressions make sense. Thus the domains of Tf and Hf c...

متن کامل

Distorted Hankel Integral Operators

For α, β > 0 and for a locally integrable function (or, more generally , a distribution) ϕ on (0, ∞), we study integral ooperators G α,β ϕ on L 2 (R +) defined by G α,β ϕ f (x) = R+ ϕ x α + y β f (y)dy. We describe the bounded and compact operators G α,β ϕ and operators G α,β ϕ of Schatten–von Neumann class S p. We also study continuity properties of the averaging projection Q α,β onto the oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2023.127221